Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
BMC Bioinformatics ; 23(1): 547, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: covidwho-2196036

RESUMEN

As of June 2022, the GISAID database contains more than 11 million SARS-CoV-2 genomes, including several thousand nucleotide sequences for the most common variants such as delta or omicron. These SARS-CoV-2 strains have been collected from patients around the world since the beginning of the pandemic. We start by assessing the similarity of all pairs of nucleotide sequences using the Jaccard index and principal component analysis. As shown previously in the literature, an unsupervised cluster analysis applied to the SARS-CoV-2 genomes results in clusters of sequences according to certain characteristics such as their strain or their clade. Importantly, we observe that nucleotide sequences of common variants are often outliers in clusters of sequences stemming from variants identified earlier on during the pandemic. Motivated by this finding, we are interested in applying outlier detection to nucleotide sequences. We demonstrate that nucleotide sequences of common variants (such as alpha, delta, or omicron) can be identified solely based on a statistical outlier criterion. We argue that outlier detection might be a useful surveillance tool to identify emerging variants in real time as the pandemic progresses.


Asunto(s)
COVID-19 , Humanos , Secuencia de Bases , SARS-CoV-2 , Análisis por Conglomerados , Bases de Datos Factuales
2.
[Unspecified Source]; 2020.
No convencional en Inglés | [Unspecified Source] | ID: grc-750459

RESUMEN

Research efforts of the ongoing SARS-CoV-2 pandemic have focused on viral genome sequence analysis to understand how the virus spread across the globe. Here, we assess three recently identified SARS-CoV-2 genomes in Beijing from June 2020 and attempt to determine the origin of these genomes, made available in the GISAID database. The database contains fully or partially sequenced SARS-CoV-2 samples from laboratories around the world. Including the three new samples and excluding samples with missing annotations, we analyzed 7, 643 SARS-CoV-2 genomes. Using principal component analysis computed on a similarity matrix that compares all pairs of the SARS-CoV-2 nucleotide sequences at all loci simultaneously, using the Jaccard index, we find that the newly discovered virus genomes from Beijing are in a genetic cluster that consists mostly of cases from Europe and South(east) Asia. The sequences of the new cases are most related to virus genomes from a small number of cases from China (March 2020), cases from Europe (February to early May 2020), and cases from South(east) Asia (May to June 2020). These findings could suggest that the original cases of this genetic cluster originated from China in March 2020 and were re-introduced to China by transmissions from samples from South(east) Asia between April and June 2020.

3.
[Unspecified Source]; 2020.
No convencional en Inglés | [Unspecified Source] | ID: grc-750457

RESUMEN

Over 10,000 viral genome sequences of the SARS-CoV-2 virus have been made readily available during the ongoing coronavirus pandemic since the initial genome sequence of the virus was released on the open access Virological website ( http://virological.org/ ) early on January 11. We utilize the published data on the single stranded RNAs of 11, 132 SARS-CoV-2 patients in the GISAID (Elbe and Buckland-Merrett, 2017;Shu and McCauley, 2017) database, which contains fully or partially sequenced SARS-CoV-2 samples from laboratories around the world. Among many important research questions which are currently being investigated, one aspect pertains to the genetic characterization/classification of the virus. We analyze data on the nucleotide sequencing of the virus and geographic information of a subset of 7, 640 SARS-CoV-2 patients without missing entries that are available in the GISAID database. Instead of modelling the mutation rate, applying phylogenetic tree approaches, etc., we here utilize a model-free clustering approach that compares the viruses at a genome-wide level. We apply principal component analysis to a similarity matrix that compares all pairs of these SARS-CoV-2 nucleotide sequences at all loci simultaneously, using the Jaccard index (Jaccard, 1901;Tan et al., 2005;Prokopenko et al., 2016;Schlauch et al., 2017). Our analysis results of the SARS-CoV-2 genome data illustrates the geographic and chronological progression of the virus, starting from the first cases that were observed in China to the current wave of cases in Europe and North America. We also observe that, based on their sequence data, the SARS-CoV-2 viruses cluster in distinct genetic subgroups. It is the subject of ongoing research to examine whether the genetic subgroup could be related to diseases outcome and its potential implications for vaccine development.

4.
Genet Epidemiol ; 45(7): 685-693, 2021 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1279364

RESUMEN

SARS-CoV-2 mortality has been extensively studied in relation to host susceptibility. How sequence variations in the SARS-CoV-2 genome affect pathogenicity is poorly understood. Starting in October 2020, using the methodology of genome-wide association studies (GWAS), we looked at the association between whole-genome sequencing (WGS) data of the virus and COVID-19 mortality as a potential method of early identification of highly pathogenic strains to target for containment. Although continuously updating our analysis, in December 2020, we analyzed 7548 single-stranded SARS-CoV-2 genomes of COVID-19 patients in the GISAID database and associated variants with mortality using a logistic regression. In total, evaluating 29,891 sequenced loci of the viral genome for association with patient/host mortality, two loci, at 12,053 and 25,088 bp, achieved genome-wide significance (p values of 4.09e-09 and 4.41e-23, respectively), though only 25,088 bp remained significant in follow-up analyses. Our association findings were exclusively driven by the samples that were submitted from Brazil (p value of 4.90e-13 for 25,088 bp). The mutation frequency of 25,088 bp in the Brazilian samples on GISAID has rapidly increased from about 0.4 in October/December 2020 to 0.77 in March 2021. Although GWAS methodology is suitable for samples in which mutation frequencies varies between geographical regions, it cannot account for mutation frequencies that change rapidly overtime, rendering a GWAS follow-up analysis of the GISAID samples that have been submitted after December 2020 as invalid. The locus at 25,088 bp is located in the P.1 strain, which later (April 2021) became one of the distinguishing loci (precisely, substitution V1176F) of the Brazilian strain as defined by the Centers for Disease Control. Specifically, the mutations at 25,088 bp occur in the S2 subunit of the SARS-CoV-2 spike protein, which plays a key role in viral entry of target host cells. Since the mutations alter amino acid coding sequences, they potentially imposing structural changes that could enhance viral infectivity and symptom severity. Our analysis suggests that GWAS methodology can provide suitable analysis tools for the real-time detection of new more transmissible and pathogenic viral strains in databases such as GISAID, though new approaches are needed to accommodate rapidly changing mutation frequencies over time, in the presence of simultaneously changing case/control ratios. Improvements of the associated metadata/patient information in terms of quality and availability will also be important to fully utilize the potential of GWAS methodology in this field.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Brasil , Estudio de Asociación del Genoma Completo , Humanos , Mutación , Filogenia , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética
5.
Genet Epidemiol ; 45(3): 316-323, 2021 04.
Artículo en Inglés | MEDLINE | ID: covidwho-1139233

RESUMEN

Over 10,000 viral genome sequences of the SARS-CoV-2virus have been made readily available during the ongoing coronavirus pandemic since the initial genome sequence of the virus was released on the open access Virological website (http://virological.org/) early on January 11. We utilize the published data on the single stranded RNAs of 11,132 SARS-CoV-2 patients in the GISAID database, which contains fully or partially sequenced SARS-CoV-2 samples from laboratories around the world. Among many important research questions which are currently being investigated, one aspect pertains to the genetic characterization/classification of the virus. We analyze data on the nucleotide sequencing of the virus and geographic information of a subset of 7640 SARS-CoV-2 patients without missing entries that are available in the GISAID database. Instead of modeling the mutation rate, applying phylogenetic tree approaches, and so forth, we here utilize a model-free clustering approach that compares the viruses at a genome-wide level. We apply principal component analysis to a similarity matrix that compares all pairs of these SARS-CoV-2 nucleotide sequences at all loci simultaneously, using the Jaccard index. Our analysis results of the SARS-CoV-2 genome data illustrates the geographic and chronological progression of the virus, starting from the first cases that were observed in China to the current wave of cases in Europe and North America. This is in line with a phylogenetic analysis which we use to contrast our results. We also observe that, based on their sequence data, the SARS-CoV-2 viruses cluster in distinct genetic subgroups. It is the subject of ongoing research to examine whether the genetic subgroup could be related to diseases outcome and its potential implications for vaccine development.


Asunto(s)
COVID-19/virología , Análisis por Conglomerados , Genoma Viral/genética , Mapeo Geográfico , SARS-CoV-2/clasificación , SARS-CoV-2/genética , COVID-19/epidemiología , China/epidemiología , Bases de Datos Genéticas , Europa (Continente)/epidemiología , Humanos , Epidemiología Molecular , América del Norte/epidemiología , Pandemias , Filogenia , Análisis de Componente Principal , Pronóstico , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/patogenicidad , Análisis Espacio-Temporal
6.
bioRxiv ; 2020 Jun 30.
Artículo en Inglés | MEDLINE | ID: covidwho-638106

RESUMEN

Research efforts of the ongoing SARS-CoV-2 pandemic have focused on viral genome sequence analysis to understand how the virus spread across the globe. Here, we assess three recently identified SARS-CoV-2 genomes in Beijing from June 2020 and attempt to determine the origin of these genomes, made available in the GISAID database. The database contains fully or partially sequenced SARS-CoV-2 samples from laboratories around the world. Including the three new samples and excluding samples with missing annotations, we analyzed 7, 643 SARS-CoV-2 genomes. Using principal component analysis computed on a similarity matrix that compares all pairs of the SARS-CoV-2 nucleotide sequences at all loci simultaneously, using the Jaccard index, we find that the newly discovered virus genomes from Beijing are in a genetic cluster that consists mostly of cases from Europe and South(east) Asia. The sequences of the new cases are most related to virus genomes from a small number of cases from China (March 2020), cases from Europe (February to early May 2020), and cases from South(east) Asia (May to June 2020). These findings could suggest that the original cases of this genetic cluster originated from China in March 2020 and were re-introduced to China by transmissions from samples from South(east) Asia between April and June 2020.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA